Algorithmen zur richtungsselektiven Verarbeitung von Schallsignalen - die Realisierung eines binauralen Cocktail-Party-Prozessor-Systems

DISSERTATION
zur Erlangung des Grades eines
Doktor-Ingenieurs
der Fakultät für Elektrotechnik
an der Ruhr-Universität Bochum

von
HARALD SLATKY
Gelsenkirchen

Bochum 1992

Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für allgemeine Elektrotechnik und Akustik (AEA) an der Ruhr-Universität Bochum. Dem Inhaber des Lehrstuhl, Herrn Prof. Dr.-Ing. J. Blauert, der diese Arbeit ermöglichte, möchte ich an dieser Stelle herzlich danken.

Mein besonderer Dank gilt auch meinen ehemaligen Kollegen Dr.-Ing. Markus Bodden, Dr.-Ing. Werner Gaik, Priv.-Doz. Dr.-Ing. Herbert Hudde und Dr.-Ing. Siegbert Wolf sowie allen Mitarbeitern und Studenten am Lehrstuhl AEA, die mich durch ihre freundschaftliche Zusammenarbeit und konstruktive Kritik unterstützten.

Zu guter Letzt danke ich Herrn Prof. Dr.-Ing. U. Heute für sein freundliches Interesse an dieser Arbeit und für die Übernahme des Korreferats.

Inhalt

1.	Einleitung	1
2.	Psychoakustische Grundlagen	
2.1.	Erkennen von Richtungen	5
2.2.	Verarbeiten von Signalen bestimmter Richtungen	
2.3.	Merkmale und Leistungen der binauralen Signalverarbeitung	
3.	Hörversuche zur Lokalisation mehrerer Schallquellen	
3.1.	Aufbau der Hörversuche.	9
3.2.	Ergebnisse der Hörversuche	
3.3.	Thesen zur Signalverarbeitung des Gehörs	
3.4.	Vergleich Hörversuche - binaurale Modelle	
4.	Chundlagen den bineuralen Signalverenbeitung	
4.1.	Grundlagen der binauralen Signalverarbeitung Die Übertragungsstrecke Schallquelle-Ohr	27
4.1. 4.2.	Binaurale Informationen bei Anwesenheit mehrerer Schallquellen	
4.2. 4.3.	Algorithmen zur binauralen Verarbeitung der Ohrsignale	
4.3. 4.4.	Kreuzkorrelationsmodelle bei einer Schallquelle	
4.5.	Die Kreuzkorrelationsfunktion bei mehreren Schallquellen	
4.5. 4.6.	Das komplexe Kreuzprodukt	
1.0.	Dus Kompieze Meuzprodukt	1 1
5.	Algorithmen zur Auswertung interauraler Phasenunterschiede	
	("Phasendifferenz-Cocktail-Party-Prozessor")	4 -
5.1.	Forderungen an einen Cocktail-Party-Prozessor	
5.2.	Das interaurale Kreuzprodukt	
5.3.	Der Phasendifferenz-Cocktail-Party-Prozessor	
	Das interaurale Kreuzprodukt bei zwei Schallquellen	
	Der Cocktail-Party-Prozessor-Algorithmus	
	Signalverarbeitungs-Beispiele	
	Eine Schallquelle mit veränderlicher Amplitude	
5.4.	Komplexe Schallfelder	
	Das interaurale Kreuzprodukt bei beliebigen Quellen	
	Zwei Schallquellen mit zeitveränderlichen Amplituden	
	Mehr als zwei Schallquellen mit konstanter Amplitude	
	Diffuses Schallfeld	
5.5.	Dominante Quellen	
5.6. 5.7	Abbildung von Quellenschätzern auf eine gewünschte Richtung	
5.7.	Zusammenfassung	/ 1

6.	Algorithmen zur Auswertung interauraler Pegelunterschiede	
<i>c</i> 1	("Pegeldifferenz-Cocktail-Party-Prozessor") Problemstellung	74
6.1. 6.2.	C	/4
0.2.	Bestimmung von Schallquellen-Parametern aus der Analyse interauraler Pegeldifferenzen	7.4
621		
	Eine Schallquelle	
	*	
	Mehr als zwei Schallquellen	
	Dominante Quellen	
6.3.	Abbildung von Schätzern auf die gewünschte Richtung	
6.4.	Verknüpfung von Schätzern aus interauralen Zeit- und Pegeldifferenzen	
6.5.	Ausblick: Verbindung unterschiedlicher räumlicher Analyse- und	63
0.5.	Verarbeitungsverfahren	96
	v erarbeitungsverramen	60
7. 7.1.	Ein Signalverarbeitungs-Rahmen für binaurale Modelle Verarbeitung der Eingangssignale	87
	Frequenzgruppen-Filter	
	Erzeugung des analytischen Zeitsignals	
	Datenreduktion	
	Verarbeitung der Ausgangssignale	
	Anforderungen an ein Resynthese-Verfahren	
	Anpassung der Eingangssignale an Signalschätzer	
	Verringern der Anzahl der Ausgangskanäle	
	Bildung der Zeitfunktion aus Abtastwerten des analytischen Zeitsignals	
7.3.	Gesamtdarstellung des Cocktail-Party-Prozessor-Modells	
	Modellstruktur	
	Leistungsfähigkeit der Cocktail-Party-Prozessoren	
8.	Steuerung des Cocktail-Party-Prozessors	
8.1.	Detektionskriterien für Richtungsinformationen: Das Hören in Räumen	102
8.2.	Dynamische Effekte der Richtungserkennung: Der Präzedenz-Effekt	103
8.3.	Beschreibung des Präzedenz-Effekts	
	durch ein binaurales Cocktail-Party-Prozessor-Modell	104
8.4.	Konsequenzen für die Steuerung eines Cocktail-Party-Prozessors	106
8.5.	Von der Prozessor-Steuerung zum Präzedenz-Prozessor	107
9.	Zusammenfassung und Ausblick	108
Anhar	ng A: Auswerteverfahren für Hörversuche	112
Anhar	ng B: Frequenzgruppen-Modelle	113
	ng C: Vereinfachte Freifeld-Außenohr-Übertragungsfunktionen	
Anhar	ng D: Ein flexibles Filterverfahren im Frequenzbereich	118
	ng E: Weitere Algorithmen zur Lösung des Cocktail-Party-Prozessor-Problems	

Anhang F: Eine Programmstruktur für komplexe Prozesse	
(Parallelstrukturen auf sequentiellen Rechnern)	125
Anhang G: Literatur	129

Verwendete Symbole

Indices

a Signal a

abt Abtastung, abgetastet

b Signal bc Signal cd Diffusfeld

f Freifeld-Übertragungsfunktion

FG Frequenzgruppe
G Gewichtungsfaktor

HE Hörereignis

i Summationsindex (z.B. Frequenzlinien)k Summationsindex (z.B. Frequenzlinien)

korr Korrigierter Wert

l linkes Ohr

m auf den Bezugspunkt Kopfmitte bezogen

max maximal vorkommender Wert min minimal vorkommender Wert

o obere Grenze der Frequenzgruppe
 p Summationsindex für Schallquellen
 q Schallquelle (auch Summationsindex)

r rechtes Ohr

soll Wert der Sollrichtung

SQ Schallquelle

u untere Grenze der Frequenzgruppe

x Parameter eines beliebigen Schätzers x (x= a oder b)

μ Mittelwert

σ Standardabweichung

θ Einfallswinkel

Exponenten

' Schätzer

+ Kreuzleistungsdichte eines Signals

* konjugiert komplex

Formelzeichen

F

Fourier-Transformierte

roi meizeichen				
a(t)	Zeitfunktion des Schallsignals a			
a _m (t)	Zeitfunktion des Schallsignals a am Bezugspunkt Kopfmitte			
a _m '(t)	Schätzer für den auf Kopfmitte bezogenen Betrag des Schallsignals			
<u>a</u> m(t)	analytische Zeitfunktion des Schallsignals a am Bezugspunkt Kopfmitte			
<u>A</u> (f)	Fourier-Transformierte des Schallsignals a			
$\underline{A}_{m}(t)^{2}$	Quellenvektor (Bezugspunkt Kopfmitte)			
$\underline{A}_{m}'(t)^{2}$	Quellenschätzer (Bezugspunkt Kopfmitte)			
$\underline{A}_{m}(f,\tau)$	auf Kopfmitte bezogene Fourier-Transformierte des Schallsignals a			
$\underline{A}_{m}^{+}(f,t)^{2}$	spektrale Kreuzleistungsdichte des Schallsignals a(t) am Bezugspunkt Kopfmitte			
AntwB	Antwortbereich für Hörversuche (z.B. ±90°)			
b(t)	Zeitfunktion eines Schallsignals b			
b _m (t)	Zeitfunktion des Schallsignals b am Bezugspunkt Kopfmitte			
b _m '(t)	Schätzer für den auf Kopfmitte bezogenen Betrag des Schallsignals			
$\underline{b}_{m}(t)$	analytische Zeitfunktion des Schallsignals b am Bezugspunkt Kopfmitte			
<u>B</u> (f)	Fourier-Transformierte des Schallsignals b			
$\underline{B}_{m}(t)^{2}$	Quellenvektor (Bezugspunkt Kopfmitte)			
$\underline{B}_{m}'(t)^{2}$	Quellenschätzer (Bezugspunkt Kopfmitte)			
$\underline{B}_{m}(f,\!\tau)$	Fourier-Transformierte des Schallsignals am Bezugspunkt Kopfmitte			
$\underline{B}_{m}^{+}(f,\tau)^{2}$	spektrale Kreuzleistungsdichte des Schallsignals b(t) am Bezugspunkt Kopfmitte			
c _{schall}	Schallgeschwindigkeit			
d	Mikrofonabstand			
<u>d</u> (t)	interaurale Differenz			
E _m '2	Leistungsdichte im diffusen Schallfeld			
$\underline{e}_{m}\theta$	analytisches Zeitsignal von Spiegelschallquellen			
f	Frequenz			
f _{abt}	Abtastfrequenz			
<u>f</u> korr	Korrekturfaktor			
f_{m}	Mittenfrequenz des Frequenzgruppen-Filters			
f_{min}	untere Grenze des Übertragungsbereiches			
f_{max}	obere Grenze des Übertragungsbereiches			
f_0	obere Grenzfrequenz			
f_{oi}	obere Grenzfrequenz der Frequenzgruppe i			
f_u	untere Grenzfrequenz			
f _{ui}	untere Grenzfrequenz der Frequenzgruppe i			
f()	Funktion von			
F	Fangbereich um eine Schallquelle, in dem Hörereignisse als korrekt lokalisiert gelten			

<i>F</i> -1	inverse Fourier-Transformierte
FG	Frequenzgruppe
g	Bewertungsfaktor
<u>G</u> m' ²	Ausgleichs-Signal für Korrekturverfahren
$h_I(t,\tau)$	Außenohr-Impulsantwort des linken Ohres
$h_r(t,\tau)$	Außenohr-Impulsantwort des rechten Ohres
$\underline{H}_{I}(f,\tau)$	Übertragungsfunktion linkes Ohr - "Kopfmitte"
$\underline{H}_{lf}(f,\tau)$	Freifeld-Außenohr-Übertragungsfunktion des linken Ohres
$\underline{H}_{m}(f,\tau)$	Freifeld-Übertragungsfunktion Kopfposition - "Kopfmitte"
$\underline{H}_{qk}(f,\tau)$	Freifeld-Übertragungsfunktion Quelle - Kopfposition
$\underline{H}_{ql}(f,\tau)$	Übertragungsfunktion Quelle - linkes Ohr
$\underline{H}_{qr}(f,\tau)$	Übertragungsfunktion Quelle - rechtes Ohr
$\underline{H}_r(f,\tau)$	Übertragungsfunktion rechtes Ohr - "Kopfmitte"
$\underline{H}_{rf}(f,\tau)$	Freifeld-Außenohr-Übertragungsfunktion des rechten Ohres
$\underline{H}_{rl}(f,\tau)$	interaurale Übertragungsfunktion
HE	Hörereignis
<u>k</u> (t)	Kreuzprodukt
l(t)	reelle Zeitfunktion des linken Ohrsignals.
<u>l</u> (t)	analytisches Zeitsignal des linken Ohrsignals.
<u>L</u> (f)	Fourier-Transformierte des linken Ohrsignals.
LG	Lokalisationsgrad: Grad der Übereinstimmung von Schallereignis- und Hörereignis-Richtung
Lt	Lateralisation (-10=links, 0=mitte, 10=rechts)
n _{oi}	Flankensteilheit der hochfrequenten Filterflanke der Frequenzgruppe i
n _{ui}	Flankensteilheit der niederfrequenten Filterflanke der Frequenzgruppe i
M, N	Gesamtanzahl
N_{HE}	Anzahl der Hörereignisse bei einem Versuch
N_{SQ}	Anzahl der Schallquellen
r(t)	reelle Zeitfunktion des rechten Ohrsignals.
<u>r</u> (t)	analytisches Zeitsignal des rechten Ohrsignals.
<u>R</u> (f)	Fourier-Transformierte des linken Ohrsignals.
S	Signal der Sollrichtung
s _m	Signal der Sollrichtung am Bezugspunkt Kopfmitte
s _m '²	Schätzer für die Leistung des Signal der Sollrichtung am Bezugspunkt Kopfmitte
<u>S</u> m' ²	Schätzer für den Quellenvektor der Sollrichtung (Bezugspunkt Kopfmitte)
$S_{rl}(\tau)$	Kreuzkorrelationsfunktion
$S_{rl}(\tau,t)$	gleitende Kreuzkorrelationsfunktion
$\underline{S}_{rl}(f,t)$	Fourier-Transformierte der gleitenden Kreuzkorrelationsfunktion
SE	Schallereignis

t Zeit

T Zeitintervall

T_U Integrationszeit zur Bestimmung statistischer Parameter

Vers Versuch (Nummer)

VP Versuchsperson (Nummer) w_r Rate-Wahrscheinlichekeit

w(t) Fensterfunktion

<u>W</u>(f) Fourier-Transformierte der Fensterfunktion

W_x Bewertungsfunktion für den Schätzer x

x beliebiger Schätzer (x = a oder b)

x_m'² Leistung eines beliebigen Schätzers am Bezugspunkt Kopfmitte

<u>X</u>m'² beliebiger Quellenschätzer (Bezugspunkt Kopfmitte)

α interaurale Dämpfung

α' Schätzer für die interaurale Dämpfung

β interaurale Phase

β' Schätzer für die interaurale Phase

 $\beta_{x'}$ interaurale Phase des beliebigen Quellenschätzers $\underline{X}_{m'^2}$

Δf (Mitten-)Frequenzdifferenz bei den Hörversuchen

 Δf_L (Mitten-)Frequenzdifferenz, ab der eine Schallquelle korrekt lokalisierbar wird.

Δf_{1,2} (Mitten-)Frequenzdifferenz, ab der beide Schallquellen gleichzeitig korrekt lokalisierbar

werden.

Δf_{FG} Bandbreite einer Frequenzgruppe

ΔL interaurale Pegeldifferenz

<u>μ</u> komplexer Mittelwert der Kreuzkorrelationsfunktionen oder des Kreuzprodukts

μ_I Mittelwert des quadratischen Betrags des linken Ohrsignals
 μ_r Mittelwert des quadratischen Betrags des rechten Ohrsignals

Φ Signalphase

 $\Delta\Phi_{ab}$ Differenz der Signalphasen der Signale a und b

 Ω Momentankreisfrequenz

<u>σ</u> komplexe Standardabweichung der Kreuzkorrelationsfunktion oder des Kreuzprodukts

 σ_l Standardabweichung des quadratischen Betrags des linken Ohrsignals σ_r Standardabweichung des quadratischen Betrags des rechten Ohrsignals

τ interaurale Zeitdifferenz

τ' Verschiebungsparameter (Kreuzkorrelationsfunktion)

 τ_1 Normierte interaurale Zeitdifferenz ($\pm 90^{\circ}$ entspricht $\pm 625 \mu s$)

τ_{max} maximale interaurale Laufzeit

 τ_{m} mittlere interaurale Laufzeit im betrachteten Frequenzbereich.

 τ_{o} mittlere Laufzeit Quelle-Emfänger

θ Einfallswinkel